

A View to a Kill

by Craig Mullins

Discussion Points

Is it practical and/or advisable to implement base table views to insulate
application programs from database change?

What are the cost and benefits that are associated with the usage of base table
views?

Is there a relevant difference between accessing base table views and accessing
base tables?

How can I implement views in a practical, workable manner to avoid excessive
administrative costs and overhead?

Contents

View Overview and Definition
Base Table View Rationale
Application Program Insulation
Base Table View Administration
View Implementation Rules
Examples of "Good" Views
View Performance
View Management Queries
Other View Arguments

What is a view?

A view is an alternative representation of data from one or more tables (or views). A
view can include all or some of the columns contained in tables (or views) on which it is
defined.

Please Take Our
Site Survey to

Help Us Improve
DBAzine.com

SEARCH

Can't find what you're
looking for?

Try our search!

REGISTER

Register for free
e-mail updates

for DBAzine.com!

FRIENDS AND RELATIVES

BOOK

Craig Mullins' DB2
Developer's Guide,

5th edition. Get many
tips and

experience-based
techniques. Learn how to

encode efficient SQL,
and how to monitor and
tune DB2 performance.

Check it out!

Please reload this page to
view the headlines

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

1 of 21 5/20/2009 9:18 AM

View Overview

Virtual Table

Acts to the end user as if it were any other DB2 base table. No data is
physically stored; data is accumulated from other tables only when the view
is accessed.

Defined by SQL

A view is defined by the same SQL SELECT statements used to access any table.
When the view is accessed, the defining SQL statements are executed.

Examples

CREATE VIEW HIGH_PAID_EMP
EMPNO, FIRST_NAME, INITIAL, LAST_NAME,
PHONE_NO, JOB, EDUC_LVL, SEX, SALARY)
AS SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
PHONENO, JOB, EDLEVEL, SEX, SALARY
FROM EMP
WHERE SALARY > 50000;

SELECT * FROM HIGH_PAID_EMP;

Views cannot contain:
FOR UPDATE OF
UNION / UNION ALL
ORDER BY
FOR FETCH ONLY
OPTIMIZE FOR . . .

Certain Views Can Not Be Updated (I/U/D):
Joins
Column Functions
DISTINCT

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

2 of 21 5/20/2009 9:18 AM

GROUP BY / HAVING
Subquery w/ Same Inner & Outer Table
View Based on Read Only View

Certain Views Can Not Be Inserted To:
Derived Data *
Constants
Views Defined Without All

Columns Not Having a Default

(that is either nullable or NOT NULL WITH DEFAULT)

* Arithmetic Expressions

With Check Option

Ensures view update integrity.

 CREATE VIEW HIGH_PAID_EMP
 (EMPNO, FIRST_NAME, INITIAL, LAST_NAME,
 PHONE_NO, JOB, EDUC_LVL, SEX, SALARY)
AS SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
 PHONENO, JOB, EDLEVEL, SEX, SALARY
 FROM EMP
 WHERE SALARY > 50000
WITH CHECK OPTION;

Top

Base Table View Rationale

One View For Each Base Table

Theory: All application programs should access views only, never base
tables

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

3 of 21 5/20/2009 9:18 AM

This (supposedly) insulates application programs from the effects of database
change.

But Is It All True ?

Maybe to a very limited degree, but not really. The administrative burden is
almost never worth the increased maintenance costs.

Let's see why . . .

Top

Application Program Insulation

There are four types of database change that base table views purport to insulate
application programs from:

Adding columns to a table
Removing columns from a table
Combining multiple tables into a single table
Splitting one table into multiple tables

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

4 of 21 5/20/2009 9:18 AM

Application Program Insulation
Adding a column

Theory: when you need to add a column, the column can be added without affecting
application programs because they all access views, not the base table.

Must never change the view.
Must create new views for the new column to be usable by any new (or existing)
application programs.

Adding a column

Analysis of Effects

If the column is not added to the view, all SQL SELECT statements on the base
table view will continue to operate correctly.

All INSERT statements will work, but only if the new column is defined as nullable
or NOT NULL WITH DEFAULT.

An insert to the view will cause the default value to be used for the new column
that is not in the view.

All existing UPDATE and DELETE statements will function properly.

Adding a column

But . . .

If you always explicitly list each column in your application program's SELECT and
INSERT statements then all of the assertions on the previous page apply to base
tables as well as to views.

And what if you decide to change the view to add the new column?

Then the SELECT * from the view and the INSERT to the view without a column
list will not work either.

Simple rules:

Never use SELECT *
Always explicitly name columns

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

5 of 21 5/20/2009 9:18 AM

Removing a column

If the column is replaced by a constant (or a calculation) in the view, then
application programs need not be changed.

But . . .

Unable to INSERT into a view with constants.

All retrievals must be reviewed! Can not rely upon a constant in production. What
about:

report totals
any report detail relying upon the constant
INS/UPD/DEL based upon constant
calculations using the constant

Final Verdict: Accuracy May Suffer!Removing a column

The bottom line is whenever a column is removed from a table:
the column must also be removed from any base table views
all application programs using that column must be modified
base table views buy you absolutely nothing in this case

Combining tables - usual proposed scenario.

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

6 of 21 5/20/2009 9:18 AM

Combining tables - the usual scenario

To make either of the 2 new views updateable, default values may have to
be changed (ie. NNWD to nullable). Is this acceptable?
View1 and View2 will need to be dropped and re-created with a new FROM
clause.
How did having View1 and View2 prior to the database change help us ?
Is this really useful?

Combining tables - why not like this ?

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

7 of 21 5/20/2009 9:18 AM

Combining tables

avoid using views until absolutely necessary
avoid the costly overhead of maintaining base
table views
new views can be named the same as the old tables that they are replacing;
avoids recoding
let's face it, poor performance is just about the only compelling reason to
combine tables; perhaps better pre-production testing methods or a faster
machine can solve this problem, too
Does the computer rule your business?

Splitting tables - the usual scenario

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

8 of 21 5/20/2009 9:18 AM

Splitting tables - the usual scenario

The revised view, VIEW1, is not updateable.

What about old statements that access only (Key, C1, C2) or (Key, C3, C4) ?

Without program changes, these requests to access VIEW1 will cause an
unnecessary join to be done adversely impacting performance!

How did having VIEW1 prior to the database change help us ?

Is this really useful ?

Splitting tables - why not like this ?

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

9 of 21 5/20/2009 9:18 AM

Splitting tables

avoid using views until absolutely necessary

avoid the costly overhead of maintaining base table views

new view can be named the same as the old table that it is replacing; avoids
recoding

without programming changes performance will suffer due to the new join

let's face it, this does not happen very often; if it does happen often, you
need better data administration and testing efforts

Demand better DA and testing efforts ! ! !

Synopsis

Adding a Column

When you add a column to a table, presumably someone needs to use that
column. The old base table view can not, unless it is changed. Therefore,
you must either change the view or create an additional, new base table
view.

Removing a Column

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

10 of 21 5/20/2009 9:18 AM

When a column is removed from a base table it must also be removed from
all base table views or replaced by a constant. But using constants can
adversely impact system and data integrity.

Combining and Splitting Tables

A change of this magnitude requires a thorough analysis of your application
code. Views can be created after the split or combination to reduce the
impact of the change. They are not needed prior to that !

Top

Q: What is the best strategy for maintaining your organization's base
table views?

a. Modify the view every time that the underlying base table changes.

b. Create a new base table view every time that the underlying base table
changes.

c. Avoid base table views.

d. Make the new guy worry about it, I've got real work to do !

e. Sometimes a, sometimes b.

f. None of the above.

Scenario 1: Modify the base table view for each change

For each change, drop and create the view to reflect the change.

But does this provide insulation? How is it different than changing the table?

Scenario 2: Create a new view for each change

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

11 of 21 5/20/2009 9:18 AM

Scenario 2: Create a new view for each change

How long do we continue to create these new views? Do we ever clean up by
dropping old views that are no longer needed or used?

Who adminsters changes to these views? If change 3 drops a column, then
views 1, 2, 3, and 4 must all reflect this change!

Who will know which view to use for which application program? Ad hoc?
Always the newest? Always the original view used by the program? A
combination?

You must maintain an explosion of views!

WHAT A MESS ! ! !

Scenario 3: Avoid base table views

Do not use one view per base table and force your application
programmers to use them when coding.

Practice data modeling techniques to reduce the number of database
changes.

Perform adequate application testing before moving to a production

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

12 of 21 5/20/2009 9:18 AM

use SELECT C1, C2, C3, C4
FROM TABLE1

not SELECT * FROM TABLE1

use INSERT (C1, C2, C3)
VALUES (V1, V2, V3)
INTO TABLE1

not INSERT VALUES (V1,
V2, V3)
INTO TABLE1

environment.

Unit testing
Integration testing
System testing
Quality Assurance testing
User Acceptance testing
Stress testing

Use views only after major database changes occur (such as splitting
and combining tables).

Note: These are NOT base table views, but views that make current
views look like old base tables that are no longer on the system!

Scenario 3: Avoid base table views

Code programs to avoid SELECT * and to explicitly name all columns needed in
every embedded SELECT and INSERT statement.

Avoiding SELECT * should not be a big problem because most shops already
impose this as a standard whether or not they use base table views... I wonder
why ?

Scenario 3: Avoid base table views

Do not use arbitrary naming standards that force you to name views differently
than tables. For example, do not embed a "V" into your view names: use the same
naming convention for all table-like objects.

a view is a logical table

SQL (syntactically) operates on views the same as it operates on base
tables.

for technical people to differentiate between tables and views, they can
query the DB2 Catalog

User-friendly view names are especially important for dynamic SQL users
(QMF, 4GL, etc)

Also, apply the same table naming conventions not only to views, but to
aliases and synonyms, as well !

Top

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

13 of 21 5/20/2009 9:18 AM

View Implementation Rules

There are three basic rules that should be followed before deciding to implement
any view:

View Usage Rule1.
Proliferation Avoidance Rule2.
View Synchronization Rule3.

Following these three rules will result in an effective view implementation and
usage strategy for your organization.

It will also ensure that the generic rule of one view per base table is avoided.

View Usage Rule

Create a view only when it achieves a specific, rational goal. Each view must have
a specific application or business requirement that it fulfills before it is created.

There are seven basic uses for which views excel. These are:
to provide row and column level security1.
to ensure efficient access paths2.
to mask complexity from the user3.
to ensure proper data derivation4.
to provide domain support5.
to rename columns, and6.
to provide solutions which can not be accomplished without views7.

Orson Welles Approach to View Creation: We will create no view before its
time!

View Usage Rule

Examples of each usage rule follow:

provide proper predicates to provide row level security; remove columns
from the view SELECT-list to provide column level security

1.

code join criteria, stage 1 and indexable predicates, etc. to ensure efficient
access paths

2.

code complex joins and subselects into the view to mask complexity from
the user

3.

code formulae (ie. BALANCE*INT_RATE) to ensure proper data derivation4.
code proper predicates and use the WITH CHECK OPTION to provide domain
support

5.

if desired, simply rename columns in the view SELECT-list6.
an example of a solution which can not be accomplished without views is
shown on the following foil

7.

View Usage Rule

An example of a solution which can not be accomplished without views: showing
detail and summary information on the same report! For example, create a report
showing all column in a table along with aggregate information on column the
columns in that table.

To accomplish:

CREATE VIEW COL_LENGTH
 (TABLE_NAME, MAX_LENGTH,
 MIN_LENGTH, AVG_LENGTH)
AS SELECT TBNAME, MAX(LENGTH),
 MIN(LENGTH), AVG(LENGTH)

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

14 of 21 5/20/2009 9:18 AM

FROM SYSIBM.SYSCOLUMNS
GROUP BY TBNAME

After creating the view, the following SELECT statement provides both detail &
aggregate column information:

SELECT TBNAME, NAME, COLNO, LENGTH,
 MAX_LENGTH, MIN_LENGTH,
 AVG_LENGTH,
 LENGTH - AVG_COL_LENGTH
FROM SYSIBM.SYSCOLUMNS C,
 authid.COL_LENGTH V
WHERE C.TBNAME = V.TABLE_NAME
ORDER BY 1, 3

Proliferation Avoidance Rule

Do not needlessly proliferate DB2 objects, in this case, views. Every DB2 object
that is created constitutes additional entries in the DB2 Catalog.

Why create what is not necessary?

The View Synchronization Rule Keep all of the views within your system
logically pure by synchronizing them with the underlying base tables.

As changes occur to base tables, views may need to change as well. Make these
changes based upon usage criteria to ensure that your organization has a sound,
usable physical database implementation.

Not necessary to correct each view right away. This is where views provide great
logical data independence !

Top

Examples of "Good" Views

Security

CREATE VIEW MY_PROJECTS
AS SELECT PROJNO, PROJNAME, DEPTNO,
 PRSTAFF, PRSTDATE, PRENDATE,
 MAJPROJ
 FROM DSN8230.PROJ
 WHERE RESPEMP = USER

This view allows the current user to view only his/her projects.

Access

CREATE VIEW EMP_DEPTS

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

15 of 21 5/20/2009 9:18 AM

AS SELECT EMPNO, FIRSTNME, MIDINIT,
 LASTNAME, DEPTNO, DEPTNAME
 FROM DSN8230.EMP,
 DSN8230.DEPT
 WHERE DEPTNO = WORKDEPT

This view joins two tables efficiently.

Derived Data

CREATE VIEW EMP_TOT_COMPENS
 (EMPNO, TOTAL_COMPENS)
AS SELECT EMPNO, SALARY+BONUS+COMM
 FROM DSN8230.EMP

This view uses a formula to derive business data (total compensation).

Top

View Performance

View Materialization

At run time, if view materialization is used, DB2 actually creates a temporary
table containing the data for the view.

View Merge

At run time, if view merge is used, DB2 will combine the predicates from the view
with the predicates from the SQL accessing the view before execution. No
temporary table is required.

View Materialization

Can be very costly.

Determine if it is being used by running EXPLAIN and checking for the view
name in the TNAME column of the PLAN_TABLE.

Try to avoid.

Consult the chart to determine when view materialization will be used.

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

16 of 21 5/20/2009 9:18 AM

All other view access will be by view merge.

View Merge

Performs much better than view materialization.

If TNAME shows the underlying table, then view merge was used.

General Performance
If view merge is used, views should perform as well as base tables.

Minor overhead at BIND time to perform the merging of the view.

Top

View Management Queries

To find all views dependent on a table that is to be changed:

SELECT DCREATOR, DNAME
FROM SYSIBM.SYSVIEWDEP
WHERE BCREATOR = 'Table Creator'
AND BNAME = 'Table Name'

To find all QMF queries that access a given view:

SELECT DISTINCT OWNER, NAME, TYPE
FROM Q.OBJECT_DATA
WHERE APPLDATA LIKE '%viewname%'

To find all plans dependent on a table that is to be changed:

SELECT DNAME
FROM SYSIBM.SYSPLANDEP
WHERE BCREATOR = 'View Creator'
AND BNAME = 'View Name'

To find all potential dynamic SQL users:

SELECT GRANTEE
FROM SYSIBM.SYSTABAUTH
WHERE TCREATOR = 'Table Creator'
AND TTNAME = 'Table Name'

Top

Other View Arguments

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

17 of 21 5/20/2009 9:18 AM

I just feel safer using views.

Well, I just feel safer when I just stay in bed all day, but my wife won't let me do
that ! She makes me go to work...

I've already implemented base table views for all of my other systems. I
don't want to subvert my standards now.

Neither did Detroit; now look what foreign automobile producers did to them!

Third party tools make administering views much easier, so why not use
them?

Aspirin makes the pain from a headache go away, so why not ?

Top

More View Arguments

But all the experts say to use one view per base table!

All the experts told Columbus that the world was flat. Too bad he didn't listen,
huh?

I'd rather be prepared by having views before I need them.

Do you buy a car with a tow-truck attached? Does it have to have a lifetime supply
of gasoline? No? Why not? If it only came with a tow truck and 2 million gallons of
gasoline.

Top

References

One View Per Base Table? Don't Do It!, by Craig S. Mullins, February 1991,
Database Programming & Design,
Views on Views, by Craig S. Mullins, DB2 Update, 1994.
IBM DB2 for OS/390 SQL Reference
IBM DB2 for OS/390 Administration Guide
IBM DB2 Application Programming and SQL Guide
DB2 Developer's Guide, by Craig S. Mullins, SAMS Publishing, for more
information: (800) 428-5331
http://www.craigsmullins.com

And in the end . . .

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

18 of 21 5/20/2009 9:18 AM

Google

 Search dbazine.com Search WWW

all that remains is a beautiful view !

--

Craig S. Mullins is director of technology planning for BMC Software. He has 20 years
of experience dealing with data and database technologies. He is the author of the books
Database Administration: The Complete Guide to Practices and Procedures and the
best-selling DB2 book, DB2 Developer’s Guide (currently in its fifth edition). Craig can
be reached via his Web site at www.craigsmullins.com or at craig_mullins@bmc.com.

legal statement | contact us
Links to external sites are subject to change; dbazine.com and BMC Software do not control or endorse

the content of these external web sites, and are not responsible for their content.
© 2004-2005 dbazine.com. All Rights Reserved.

SEARCH

Cut UDB Query
Times in Half:
Sort and I/O

Tuning

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

19 of 21 5/20/2009 9:18 AM

Learn how to measure
and evaluate DB2

UDB Linux, UNIX, and
Windows sort and I/O

performance in a two-part
technical webinar with

Scott Hayes.

Enroll for Part 1 to
learn terminology
and formulas to lay
the groundwork to
understanding how
to achieve
breakthrough
performance in
your environment.
Enroll for Part 2 to
see measurements
used in case
studies, and learn
how to configure
your DB2 UDB
engine for optimal
query
performance.

Both presentations are
updated for DB2 V8

Multi-Platforms.

Improve Your
ROI with

SmartDBA

Register now for a free
webinar on proving the

economic impact of
enterprise data

management to receive
a complimentary research

paper, “The Total
Economic Impact® of

BMC Software's
SmartDBA Data

Management Solutions”
by Forrester Consulting.

Register now.

Free Seminars,
Webinars from
BMC Software

UPCOMING WEBINARS

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

20 of 21 5/20/2009 9:18 AM

It's RAD - Recovery,
Audit, Data Migration
Plus - Using a DB2 Log
(Tuesday July 20, 1:00 pm CST)

DBAzine - A View Review by Craig Mullins http://web.archive.org/web/20050215221821/www.dbazine.com/mullins...

21 of 21 5/20/2009 9:18 AM

