
 Craig S. Mullins
Return to Home Page

January 2004
 

 

 

                                       

   

The DBA Corner
by
Craig S. Mullins
 
 

The
Death of Denormalization?
Ever
since the first relational DBMS products were
introduced, DBAs have fought the battle of
normalization
versus denormalization. Normalization is
a design approach
that minimizes data redundancy and
optimizes data
structures by systematically and
properly placing data
elements into the appropriate
groupings. A normalized data
model can be translated
into a physical database that is
organized correctly.
In simple terms, normalization is the
process of
identifying the one best place each fact belongs.

E.F.
Codd, the creator of the relational model, created
normalization in the early 1970s. Like the relational
model of
data, normalization is based on the
mathematical principles
of set theory. Although
normalization evolved from relational

http://www.craigsmullins.com/
http://www.mullinsconsulting.com/dba_book.htm


theory, the
process of normalizing data is generally
applicable to
any type of data.

Normalization
is a logical process and does not necessarily
dictate
physical database design. A normalized data model
will
ensure that each entity is well formed and that each
attribute is assigned to the proper entity. Of course,
the best
situation is when a normalized logical data
model can be
physically implemented without major
modifications, but
DBAs frequently had to divert from
implementing a fully
normalized physical database due
to deficiencies in the
DBMS in terms of performance or
design.

So
a normalized database implementation minimizes
integrity problems and optimizes updating; but it may
do so
at the expense of retrieval. When a fact is
stored in only one
place, retrieving many different,
but related facts usually
requires going to many
different places. This can slow the
retrieval process.
Updating is quicker, however, because the
fact you're
updating exists in only one place.

Many
of our most critical applications drive transactions
that
require rapid data retrieval. Some applications
require
specific tinkering to optimize performance at
all costs. To
accomplish this, sometimes the decision
is made to
denormalize the physical database
implementation, thereby
deliberately introducing
redundancy. This can speed up the
data retrieval
process, but at the expense of data
modification.

Why
is denormalization dying? First, the modern DBMS has
been improved over the past twenty years. Today's most
popular DBMSs (DB2, Oracle, SQL Server) have better



internal performance features and characteristics that
can
more quickly retrieve data. Another factor is
better query
optimization. With the in-depth, complex
cost-based
optimizers used by modern DBMSs, access
paths are
becoming more efficient. Finally, we have
materialized query
tables (MQTs), also known as
automated summary tables
(ASTs). These are new
database objects supported by
some of today's DBMSs
that can be thought of as a
materialized view. A table
is created based on a SQL
statement, and the DBMS
manages the gathering of the
data, which is then
physically stored. And the optimizer
"knows"
about these objects so a query can be written
against
either the materialized query table or the underlying
tables themselves. And the DBMS provides options to
control data refresh rates and other use
characteristics.

Using
these features, the DBA can create a fully normalized
physical database implementation - and then create
"denormalized" structures using MQTs or ASTs.
This brings
the benefit of data integrity because the
database is fully
normalized, along with the speed of
retrieval using the
materialized query table.

Indeed,
the death of denormalization is fast approaching.
And
who among us will really miss it when it finally kicks
the
bucket?

From Database
Trends and Applications, January 2004.

©
2004 Craig S. Mullins,  All rights reserved.

Home.  

http://www.dbta.com/
http://www.craigsmullins.com/

