M Mullins Consulting, Inc.

(901 etor oo The Web Site of Craig S. Mullins

Home Services Articles Presentations

A Guide to Db2 Application Performance for Developers
By Craig S. Mullins

it
no
0" A hew book to help programmers write efficient Db2 code
Covers both Db2 for z/O5 and LUW

Books Speaking 2021 Social Media Database Links Contact Us

The Resource for Users of IBEM zSeries & 5350 Systems

zData Perspectives
Dynamic SQL Versus Static SQL

by Craig S. Mullins

amazon Many DB2 professionals are not comfortable
determining when to choose dynamic SQL
instead of static. This month's column
examines criteria that can be used to help
make that decision.

DB2 Developer's ere -
Guide: A Performance Sensitivity: For very frequent,

$53.99 high performance SQL statements weigh the

overhead required for the PREPARE against

the potential for better access paths when

choosing between dynamic and static. When
performance is crucial, favor static SQL. Using dynamic SQL
incurs a higher initial cost per SQL statement due to the
PREPARE. Once prepared, the difference in execution time for
dynamic versus static diminishes. If multiple users are running
the same dynamic application with the same statements, and
dynamic statement caching is implemented, only the first
application to issue the statement realizes the cost of
preparing.

Shop now

February / March 2011

Range Predicates: Range predicates refer to greater-than (=),
less-than (<), BETWEEN, and LIKE. The more frequently you
need to use range predicates the more you should consider
dynamic SQL. This is so because the optimizer can take
advantage of distribution statistics and histogram statistics with
dynamic SQL to formulate better access paths because the
actual range will be known.

Repetitious Execution: If the statement runs once a day, for
example, it should not really matter whether dynamic or static
SQL is used. Because the statement does not run frequently the
impact of dynamic preparation is likely moot. As the frequency
of execution increases, you should favor static SQL or dynamic
SQL with KEEPDYNAMIC YES. The cost of the PREPARE
becomes a smaller percentage of the overall run time of the
statement the more frequently it runs (if the cached prepare is
reused).

Nature of the Query: If you need all or part of the SQL

etatamant tn ha nanaratad duorine annlicatinn everidinn fawunre

http://www.mullinsconsulting.com/index.html
http://www.mullinsconsulting.com/services.html
http://www.mullinsconsulting.com/articles.html
http://www.mullinsconsulting.com/presentations.html
http://www.mullinsconsulting.com/books.html
http://www.mullinsconsulting.com/speaking-2021.html
http://www.mullinsconsulting.com/social-media.html
http://www.mullinsconsulting.com/rellinks.html
http://www.mullinsconsulting.com/contact.html
https://www.amazon.com/dp/B007Y6K9TK/ref=as_sl_pc_tf_til?tag=datamullins-20&linkCode=w00&linkId=b83da6888f6c2b96e9d9b086a0097bc0&creativeASIN=B007Y6K9TK
https://www.amazon.com/dp/B007Y6K9TK/ref=as_sl_pc_tf_til?tag=datamullins-20&linkCode=w00&linkId=b83da6888f6c2b96e9d9b086a0097bc0&creativeASIN=B007Y6K9TK
https://www.amazon.com/dp/B007Y6K9TK/ref=as_sl_pc_tf_til?tag=datamullins-20&linkCode=w00&linkId=b83da6888f6c2b96e9d9b086a0097bc0&creativeASIN=B007Y6K9TK
https://www.amazon.com/dp/B007Y6K9TK/ref=as_sl_pc_tf_til?tag=datamullins-20&linkCode=w00&linkId=b83da6888f6c2b96e9d9b086a0097bc0&creativeASIN=B007Y6K9TK
https://www.amazon.com/dp/B007Y6K9TK/ref=as_sl_pc_tf_til?tag=datamullins-20&linkCode=w00&linkId=b83da6888f6c2b96e9d9b086a0097bc0&creativeASIN=B007Y6K9TK

In some cases, the access paths chosen by the optimizer for
dynamic SQL can be better but authorization checking costs
and prepare statement lookup can often mean up to 30% more
CPU time for dynamic SQL the first time the statement is
executed.

Language: For COBOL, it still makes sense to favor static
over dynamic as a default. Static is generally easier to code,
monitor, and tune. This does not mean that dynamic SQL has
no place within a COBOL shop, just that static is the standard
and you should deviate only when absolutely necessary. For
Java, C and web developers, dynamic SQL is easier to use
because of the IDEs and CLlIs that simplify coding. Of course,
the same performance issues that impact COBOL programs
exist for Java, too.

Data Uniformity: When data is very non-uniformly distributed
(e.g. beer drinkers skew male) it makes sense to favor dynamic
SQL over static. Dynamic SQL can result in more efficient
access paths than static for non-uniform distributions. This is so
because DBZ2 can potentially derive different access paths for
different host variable values. Columns that have a limited
number of values can result in significantly different access
paths for the same SQL statement when the DB2 optimizer has
access to the values.

Data can also be correlated, which is a similar yet separate
concept. Forexample, CITY, STATE, and ZIP_CODE data will
be correlated. The ZIP_CODE determines the CITY and
STATE. And there will be many more occurrences of
HOUSTON, TX than there would be of HOUSTON, CA {if,
indeed, thatis even valid data).

From zJournal, Feb / March 2011.

© 2012 Craig S. Mullins,

R I R e T G 1 L S e 1y T v
dynamic over static SQL. A common scenario involves a
transaction where the user is presented with a screen and can
specify various criteria for querying. The SQL statement is
based on what the user enters and there can be many
variations. Coding such an application with static SQL is quite
difficult because of the numerous variations that need to be
supported. But it is a snap with dynamic SQL because the SQL
can be built on the fly based on what is entered.

Runtime Environment: Favor dynamic SQL when you need to
build an application where the database objects may not exist
at precompile time. Binding a static SQL program that attempts
to access a non-existent table will not succeed unless you also
specify VALIDATE(RUN); but then every time you run the
program, DB2 must validate that the required database objects
exist, thereby degrading performance.

RUNSTATS Frequency: Consider dynamic SQL when your
application needs to access data that changes frequently and
dramatically. Using dynamic SQL increases the probability of
using the most optimal access path, based on current statistics.
With static SQL you would have to either use REOPT, or make
sure that you REBIND the program as frequently as you run
RUNSTATS -- and even then if the data is skewed you may not
be getting the best access path for every SQL statement in your
program.

Summary: Of course, the issues we've discussed here are
conditional, and you will need to apply knowledge of your
business, application, and specific performance requirements
in order to make informed decisions on dynamic versus static
SQL. But you can use the scenarios here to drive your decision-
making process.

http://www.dbta.com/

DB2PORTAL.com

© 2021 Mullins Consulting, Inc. All Rights Reserved Privacy Policy Contact Us

http://www.mullinsconsulting.com/Privacy.html
http://www.mullinsconsulting.com/contact.html

