
 Craig S. Mullins
Return to Home Page

June/July 2003
 

 

 

                                     zData Perspectives
by
Craig S. Mullins
 
 

DB2
and the Old Dipsy Doo

By
Craig S. Mullins

One of the
biggest problems DBAs face when they are managing large
partitioned
DB2 table spaces is contending with
non-partitioned indexes. Well, here comes IBM
on its
white horse with DB2 Version 8 to fight those problems
with the old dipsy doo;
in this case, dipsy is more
appropriately spelled "DPSI." 

However, before
we examine the solution, let's first investigate the
problem in a little
more detail.

Non-Partitioned
Indexes (NPIs)

In order to
define a partitioned table space in DB2, a partitioning
index is required.
The CREATE INDEX statement specifies
the range of values that DB2 will store in
each specific
partition. The partitioning index will have individual
PART clauses,
each which specifies the highest value
that can be stored in the partition. To
illustrate,
consider Figure 1, which shows the CREATE statement for
a partitioning
index. This creates four partitions.
Behind the scenes, DB2 will create four separate

http://www.craigsmullins.com/


data
sets – both for the table space data and for the index
data. However, every
other index defined on the table
will be a "regular" DB2 index – that is, a
non-
partitioning index (NPI). This index resides in a
single data set unless the
PIECESIZE clause is used to
break it apart – and even then the data will not be
broken apart by partition.

Figure 1 –
The CREATE Statement for a Partitioning Index

CREATE
INDEX XEMP2 
ON DSN8710.EMP (EMPNO ASC)
USING STOGROUP DSN8G710
PRIQTY 36 ERASE NO CLUSTER
 (PART
1 VALUES('H99'),
 
PART 2 VALUES('P99'),
 
PART 3 VALUES('Z99'),
 
PART 4 VALUES('999'))
BUFFERPOOL BP1
CLOSE YES
COPY YES;

NPIs can cause
contention, particularly with DB2 utilities. You can run
a utility
against a single table space or index
partition, but you do not have that luxury with
NPIs
because they are not partitioned. You can minimize and
manage downtime by
running utilities a partition at a
time. However, running utilities against NPIs can
impact
an entire table space. Additionally, contention on NPIs
can cause
performance bottlenecks during parallel
update, insert, and delete operations.

Data
Partitioned Secondary Indexes (DPSIs)

In Version 8 of
DB2, IBM introduces the Data Partitioned Secondary Index
(usually
shortened to DPSI and pronounced "dipsy").
DPSIs are significant because they
help to resolve the
problems involved with NPIs that I just discussed. A
DPSI is
basically a partitioned NPI.

Therefore, with
a DPSI the index will be partitioned based on the data
rows. The
number of parts in the index will be equal to
the number of parts in the table space –
even though
the DPSI is created based on columns that are different
from those
used to define the partitioning scheme for
the table space. Therefore, partition 1 of
the DPSI will
be for the same rows as partition 1 of the table space,
and so on.



These changes
to DB2 V8 provide many benefits including:

·        
The ability to
cluster by a secondary index

·        
The ability to
drop and rotate partitions easily

·        
Potentially
less overhead in data sharing.

NPIs
historically have caused DB2 performance and
availability problems, especially
with utilities. DPSIs
solve many of these problems. With DPSIs there is an
independent index tree structure for every partition.
This means that utilities do not
have to share pages or
index structures. In addition, logical drains on indexes
are
now physical at the partition level. This helps
utility processing in several useful
ways. For example,
you can run a LOAD by partition with no contention
because the
DPSI is partitioned the same way as the data
and the partitioning index. Additionally,
when
reorganizing with DPSIs, the BUILD2 phase is not needed.
Even your
recovery procedures may be aided because you
can copy and recover a single
partition of a DPSI.

However, DPSIs
are not magical objects that solve all problems. Indeed,
changing
an NPI to a DPSI may cause some queries to
perform worse than before. Some
queries will need to
examine multiple partitions of the DPSI as opposed to
the single
NPI it previously used. On the other hand, if
the query has predicates that reference
columns in a
single partition only, then performance may improve
because only one
DPSI partition needs to be probed.

Of course, not
every index on a partitioned table should be a DPSI. You
need to
analyze your data access and utility processing
requirements to determine when to
use NPIs vs. when to
use DPSIs. Before using DPSIs, you will have to examine
your
queries to determine predicate usage and the
potential performance impact.

Summary

This
introduction to DPSIs is not comprehensive. Be sure to
investigate DPSIs over
the next year so you will be
ready to use them when DB2 V8 becomes generally
available. By giving us the old dipsy-doo in Version 8,
IBM is solving one of the
bigger availability issues
associated with DB2.

 

 



 

 

From
zJournal, June/July 2003.

©
2003 Craig S. Mullins,  All rights reserved.

Home.  

http://www.zjournal.com/
http://www.craigsmullins.com/

